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Abstract 
 
This paper presents a computationally efficient and accurate new methodology in the differential quadrature analysis 

of structural mechanics for flexible membranes ballooning in three dimensions under a negative air pressure differential. 
The differential quadrature method is employed to discretize the resulting equations in the axial direction as well as for 
the solution procedure. The weighting coefficients employed are not exclusive, and any accurate and efficient method 
such as the generalized differential quadrature method may be used to produce the methods weighting coefficients. A 
second-order paraboloid of revolution is assumed to describe the ballooning shape. This study asserts the accuracy, 
convergency, and efficiency of the methodology by solving some typical stability, straining analysis membrane prob-
lems, and comparing the results with those of the exact solutions and/or those of physical tests. 
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1. Introduction 

Membrane structures have long been under consid-
eration as structural elements because they possess 
certain advantageous characteristics such as high 
strength-to-weight ratio and relatively low cost. How-
ever, what makes their design difficult is the inherent 
non-linearity of the deformation and the material. A 
mechanically fastened single-ply membrane on a 
roofing system is a common example. The theory of 
mechanics and performance of the tensile structure 
has been well established by Otto [1] and many others. 

We use ideal models of perfectly flexible mem-
brane; it is common to have a flexible membrane laid 
on a stiff substrate and mechanically attached. Fas-
tener pullout is a performance concern, and this has 
been studied by Baskaran [2] and Gerhardt [3]. Zar-
ghamee [4, 5] studied the wind force acting on the 

ballooning roof membrane and concluded that the 
membrane must be designed for the static as well as 
for a part of the fluctuating component of wind pres-
sure. Much research work has been published on the 
development of an appropriate wind testing protocol 
for the single-ply membrane [6-8]. Several authors 
have investigated membrane in the screen-type wall 
system. However, most of the works are restricted 
and related to studies on the ballooning of the single-
ply roof membrane and its effect on roofing system 
performance. Ballooning seems to be an unpopular 
issue, and it has not been the subject of much research. 
Burnett [9] discussed seven important functions that 
the exterior membrane performs in the screen-type 
wall system. Kumar [10] performed a comprehensive 
literature review on pressure-equalized rain screen 
walls. In the published literature on pressure equaliza-
tion models, some do not include the air cavity vol-
ume as an independent parameter, therefore excluding 
the influence of the membrane ballooning [11-15]. 
Choi [16-18] carried out a series of full-scale tests to 
study aluminum-curtain wall systems often used in 
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Southeast Asia. Canadian Mortgage and Housing 
Corporation (CMHC) [17, 18] developed a computer 
program, Rain Screen 2.1, to assess screen pressure 
equalization. The effect of membrane ballooning on 
pressure equalization has been considered in some 
pressure equalization models [15-18]. Furthermore, 
the importance of the flexibility of the membrane and 
its ballooning in the screen-type wall system has been 
realized and discussed in some published literature [9, 
10]. 

The commonly used numerical methods in struc-
tural mechanics analysis are the finite element 
method, finite difference method, boundary element 
method, and Rayleigh–Ritz method. As an efficient 
alternative numerical tool, Differential Quadrature 
Methods (DQMs) have been used for structural 
analysis. Details on their development and applica-
tions are found in the review paper by Bert and Malik 
[19]. Among the different approaches for determining 
the weighting coefficients [19], the Lagrange interpo-
lation functions and trigonometric/harmonic functions 
are the most popular test functions. The applications 
of PDQ for thin beams and plates as well as for rec-
tangular thick plates have been carried out by Ma-
lekzadeh [20, 21]. Liew and Han [22] employed the 
DQ method to present the bending analysis of simply 
supported thick skew plates based on the first-order 
shear deformation plate theory.  

In this paper, the capabilities of the DQMs for the 
deformation analysis of flexible membranes balloon-
ing in three dimensions under a negative air pressure 
differential are investigated. There is clearly a need to 
study the correlation between the wind pressure act-
ing on the membrane and its ballooning, particularly 
the ballooning shape and the deflection. This paper 
applies the theory of elastics to membrane ballooning 
and discretizes the resulting equations in the axial 
direction by DQM, and for the solution procedure, 
develops a theory to model the ballooning under a 
given static air pressure differential. 
 

2. Governing differential equations 

In accordance with the theory of elasticity, a valid 
solution can be obtained if force equilibrium (stress 
analysis) is satisfied. Consider a 3D ballooning mem-
brane element in the xyz-coordinate system as shown 
in Fig. 1. Under the negative air pressure differential 
P, the membrane deforms to form a curvature, and the 
membrane element is formed by intersecting pairs of  

 
 
Fig. 1. Ballooning membrane element for stress analysis. 

 

 
 
Fig. 2. A flexible membrane ballooning in a 3-D situation. 

 
coordinate lines x = const and y = const. We describe 
the membrane stresses by a system of skew forces Nx 
and Ny (throughout this formulation, the notation in 
[25] is used). 

The fundamental mechanical characteristics of the 
3-D flexible membrane need to be considered before 
developing the structural mechanics. Several assump-
tions need to be made. First, in order to apply the 
theory of elasticity, the 3-D ballooning membrane is 
assumed to deform within its linear-elastic range. In 
Fig. 2, the membrane’s four fasteners are idealized as 
four fixed points, and the air pressure differential P is 
applied across the membrane. When ballooning, 
plane ABCD deforms to a 3-D curvature in the xyz-
coordinate system, as shown in the figure. The air 
pressure differential P is perpendicular to the de-
formed membrane curvature, that is, along the normal 
direction of the curvature. Given that the depth of the 
wall cavity limits the membrane deformation, the 
ratio of the span, that is, the ratio of the distance be-
tween adjacent mechanical fasteners to the maximum 
deflection of the membrane in a real screen-type wall 
system, is usually greater than 20. It follows that the 
decomposed force in the z-direction is much greater 
than that in the x- and y-directions. It is presumed that 
considering only the air pressure differential compo-
nent in the z-direction will not cause any significant 
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error.  
Fig. 2 illustrates a geometric model of the 3-D bal-

looning membrane. It shows four edges (AB, BC, CD, 
and DA) and two diagonals (AC and BD) as straight 
lines before the membrane balloons. Under the nega-
tive air pressure differential P, the membrane bal-
loons to form a curvature. It is assumed that the four 
edges and two diagonals all become second-order 
parabolas after the membrane deforms. The maxi-
mum deflection of the membrane is the distance be-
tween points O and O′, which is denoted by H. The 
maximum deflection for four-edge parabolas is re-
ferred to as h. If a straight line is drawn through 
points E and F, it intersects with line OO′. Parabola 
EO′F and parabola BFC have the same span; thus, the 
deflection of parabola EO′F is also h. 

Therefore, the following geometric relation shown 
in Eq. (1) between H and h is true in  
 

2H h= .  (1) 
 

In fact, if one uses a plane perpendicular to the x–y 
plane to cut the membrane; the cutting trace is always 
a second-order parabola. In analytic geometry, this 
kind of surface is referred to as the paraboloid of 
revolution. The ballooning membrane shown in Fig. 2 
is cut from a paraboloid of revolution by four planes: 
x=± (l/2) and y=± (l/2). 

Its shape function is given by 
 

2
2 2 ( )

2
Lx y L z
H

+ = − .  (2) 

 
The skew forces Nx and Ny are the forces per unit 

length of the line elements through which they are 
transmitted. The actual forces are obtained by multi-
plying them by the length of this element. The ele-
ment length dx and dy become dx/cos w and dy/cos y 
after the membrane deforms. Therefore, we can write 
the horizontal components of these forces, that is, the 
x component, as follows: 
 

cos
cos

dyN N dyx xχ
θ

=
.  

(3)
 

 
The y component is given by 

 

cos
cos

dxN N dxy yθ
χ

=
.
  (4) 

 
The relationship between the membrane forces and 

their projections on the x–y plane is described by 

cos cos  
cos cosx x y yN N and N Nθ χ

χ θ
= =

.
  (5) 

 
As the geometric shape of the ballooning membrane 

is already determined in Eq. (2), we can write it as fol-
lows: 
 

2 2
4 4  z H z Htg y and tg x

y xL L
θ χ∂ − ∂ −
= = = =
∂ ∂ .

  (6) 

 
According to the relationship between triangular 

functions, we obtain 
 

2 2 2 2
4

1 1cos
1 ( ) 161 ( )tg H y

L

θ
θ

= =
+ +

 

2 2 2 2
4

1 1cos
1 ( ) 161 ( )tg H x

L

χ
χ

= =
+ +

.

  (7) 

 
Substituting Eq. (7) into Eq. (5) gives  
 

2 2 2
4

2 2 2
4

161 ( )

161 ( )
x x

H x
LN N

H y
L

+
=

+
 

2 2 2
4

2 2 2
4

161 ( )

161 ( )
y y

H y
LN N

H x
L

+
=

+
.

  (8) 

 
After these preparations, it becomes easy to write 

the conditions of the equilibrium for the membrane 
element shown in Fig. 1. Considering only the exter-
nal pressure differential P, we only need to write the 
equilibrium equation in the z-direction. The z-
direction components of the forces acting on the 
membrane element are given by 
 

( )sin ( ) ( )
cosx x x

dy zN dx N tg dxdy N dxdy
x

χ χ
θ

∂
= =

∂  
( )sin ( ) ( )

cosy y y
dx zN dy N tg dxdy N dxdy

y
θ θ

χ
∂

= =
∂  

(9)
 

 
The differential equation for force equilibrium in-

volves their differential increments shown as follows: 
 

( ) ( ) 0x y
z zN dxdy N dxdy Pdxdy

x x y y
∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂

 (10) 

 
Calculate to yield 
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2 2

2 2 0yx
x y

NNz z z zN N P
x x y yx y

∂∂∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂∂ ∂ . 
(11)

 
 

As there is no shear force or external load in the x- 
or y-directions, the equilibriums in the x- and y-
directions are indicated as 
 

0  0yx NN and
x y

∂∂
= =

∂ ∂ .  
(12)

 
 

Therefore, Eq. (11) can be simplified as 
 

2 2

2 2 0x y
z zN N P

x y
∂ ∂

+ + =
∂ ∂ . 

 (13)
 

 

3. Review of the differential quadrature method 

The DQM is based on the idea that the partial de-
rivative of a field variable at the ith discrete point in 
the computational domain is approximated by a 
weighted linear sum of the values of the field variable 
along the line that passes through that point, which is 
parallel with the coordinate direction of the derivative 
[23]. Considering a two-dimensional field variable u 
(x,y), its mth order derivative with respect to x, and its 
(m+n)th order derivative with respect to x and y are 
approximated as follows:  

 
( )

( , )
1

( , )
x

i j

Nm m
ikx y k jm

k

u A u x y
x

=

∂
=

∂ ∑   (14) 

( ) ( )
( , )

1

( , )
x

i j

Nm n m n
ik jlx y k lm n

k

u A A u x y
x y

+

=

∂
=

∂ ∂ ∑   (15) 

 
There are two key points in the successful applica-

tion of the DQM: how the weighting coefficients are 
determined and how the grid points are selected. The 
method developed by Shu and Richard [23] is said to 
be computationally more accurate than other methods. 
According to Shu and Richard’s rule, the weighting 
coefficients of the first-order derivatives in ξ-direction 
(ξ = x or y) are determined as follows: 
 

(1)

(1)

1,

( )     
( ) ( )

    

i

i j j
ij N

ij

j i j

M for i j
M

A
A for i j

ξ

ξ
ξ ξ ξ

= ≠

⎧ ≠⎪ −⎪
= ⎨
⎪ − =⎪
⎩

∑
,  (16) 

where 
 

1,

( ) ( )
N

i i j
j i j

M
ξ

ξ ξ ξ
= ≠

= −∏
.  

(17)
 

 
It has been demonstrated that non-uniform grid 

points give better results with the same number of 
equally spaced grid points [19]. In this paper, we 
chose these sets of grid points in terms of the natural 
coordinate directions x and y as 
 

1 ( 1)1 cos
2 ( 1)i

i
Nξ

πξ
⎡ ⎤⎡ ⎤−

= −⎢ ⎥⎢ ⎥
−⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

.  (18) 

 

4. Differential quadrature analogs 

The derivatives of the field variables may be trans-
formed into the computational domain efficiently by 
modifying the weighting coefficients as 

 

2 2, , ,
x x y y
ij ij ij ijx x y y

ij ij ij ij
A B A B

A B A B
L LL L

= = = =
.  

(19)
 

 
Using the general differential quadrature (GDQ) of 

Shu and Richards using (13) and (19), the DQ ana-
logs of the governing equations and boundary condi-
tions take the following forms, respectively. 
 
4.1 Governing equations 

Substituting Eq. (14) and (15) into Eq. (13) and re-
arranging them, we can obtain 

 

1 1

( ) ( ) 0
yx NN

x y
x ij ik kj y ij jk ik ij

k k

N B Z N B Z P
= =

+ + =∑ ∑
,  

(20)
 

 
where 
 

( )
( , ) ( , )

(  )(  ) (  ) ,   (  )
i j i jij x y ij x y

ξ

ξ
∂

= =
∂

.  (21) 

 
4.2 Boundary conditions 

Let us consider the stress resultants Nx and Ny in 
the diagonal parabola (AC in Fig. 2). Any point on 
line AC must satisfy x = y on the x–y plane; thus, it 
follows that Eq. (23) is true. 
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Fig. 3. Line elements on the ballooning membrane for strain 
analysis. 
 

 
 
Fig. 4. Deformed membrane. 

 
( ) ( )x ij y ijN N=   (22) 

 
Note that Eq. (23) is only true for the diagonal pa-

rabola AC. The shear strain is not considered here 
because the membrane is shear-free. The deformed 
line elements E′F′ and E′G′ can be considered as 
straight lines, which are sufficient approximations for 
the strain analysis purpose. The coordinates of points 
E′, F′, and G′ are as follows: 
 

( , , ( , )), ( , , ( , ))E x y z x y F x dx y z x dx y′ ′ + +   (23) 
( , , ( , ))G x y dy z x y dy′ + +   (24) 

 
The deformed length of the line element E′F′ is (Fig. 

3)  
2 2 2 2( ) ( ) ( ) 1 ( )z zE F dx dx dx

x x
∂ ∂′ ′ = + = +
∂ ∂

.  (25) 

 
The length of the line element EF before balloon-

ing is simply dx. Therefore, the strain is described as 
 

2

1

( ) 1 ( ) 1
xN

x
x ij ik kj

k

E F EF
A Z

EF
ε

=

′ ′ −
= = + −∑   (26) 

2

1

( ) 1 ( ) 1
yN

y
y ij jk ik

k

E G EG
A Z

EG
ε

=

′ ′ −
= = + −∑

.
  (27) 

Table 1. Material properties. 
 

Material property TyvekTM Homewrap TyparTM House-
wrap 

Poisson’s ratio 0.24 0.29 

Thickness t (mm) .016 0.33 

E value (MPa) 875 250 

 
Table 2. The maximum deflection H (mm) of the 3-D bal-
looning membrane. 
 

Maximum deflection H (mm) 

TyvekTM Homewrap (E = 875 
MPa, t = 0.16mm) 

TyparTM Housewrap (E = 250 
MPa, t = 0.33mm) 

L = 406mm 
(16′′ grid) 

L = 610mm 
(24′′ grid) 

L = 406mm 
(16′′ grid) 

L = 610mm 
(24′′ grid) 

P 
(Pa)

 
 
 
 
 

Analyti-
cal 

DQM
Analyti-

cal 
DQM

Analyti-
cal 

DQM 
Analyti-

cal 
DQM

100 14.1 13.97 23.4 23.21 16.4 16.26 27.4 27.15

200 17.3 17.16 28.6 28.34 20.5 20.35 32.0 31.71

300 19.7 19.91 31.3 31.6 23.4 23.58 39.3 39.57

400 21.7 21.92 32.9 33.06 25.6 25.75 42.3 41.96

500 23.3 23.11 39.1 39.41 27.3 27.10 44.5 44.81

600 24.7 24.95 41.0 40.67 28.6 28.37 50.8 50.39

 
Hooke’s law has the standard form shown as 

 
, , 2(1 )x x y y y x xy xyEt N N Et N N Et Nε ν ε ν γ ν= − = − = + .

  (28) 
 

Solving the above equations, a large deformation 
can be obtained. In the DQM, the governing equa-
tions and boundary conditions are directly discretized; 
thus, elements of stiffness and mass matrices are 
evaluated directly. In addition to satisfying the gov-
erning equations in each domain, the external bound-
ary conditions as well as geometric and natural com-
patibility conditions at common sections of the 
neighboring sub-domains or elements are enforced. 
 

5. Numerical examples 

In this section, two commonly used types of mem-
branes in the US market, namely, TyvekTM Home-
wrap and TyparTM Housewrap are solved by DQM. 
Without any loss of generality, an equal number of 
grid points in both directions are assumed, that is, Nx 
= Ny.  

Chamara [23] conducted experimental work to de-
termine the material properties of these two mem-
branes, and they are the parameters needed to solve 
Eq. (22). The results are summarized in Table 1. For 
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analytical purposes, the fastener is idealized as a point. 
To check the convergence and accuracy of the algo-
rithm of DQM for membranes, an example is consid-
ered. Its results are compared with the solutions of 
Xing Shi [24], in which he analytically calculated the 
maximum deflections. In accordance with theory of 
elasticity, Xing Shi substituted the following: force 
equilibrium (Stress Analysis), deformation compati-
bility, and stress–strain relationship, triggering a valid 
analytical solution. Using the mathematical software 
to solve the mentioned equations for TyvekTM 
Homewrap and TyparTM Housewrap, the results of the 
maximum deflection H under different air pressure 
differentials are summarized in Table 2. It is shown 
that by using 10 grid points, the error is less than 1%. 
Furthermore, the stability of the convergence behav-
iors of the solutions is confirmed. 
 

6. Conclusions 

A numerical methodology called DQ procedure for 
the deformation of flexible isotropic membrane was 
developed. The completeness of the present DQM 
was demonstrated for a membrane under a negative 
air pressure differential. Accurate results were ob-
tained with only few grid points, showing the advan-
tage of the low computation cost of the method (Fig. 
4.). 
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